If you are really interested in any of the following proofs, click on it at your own risk!
If it is too ugly, you can close it with a second click!
Index transformation $j \rightarrow k-j$ in the first sum, and $j \rightarrow n+k-j$ in the second sum:
$(\vec x \cdot \vec y)_k = \sum\limits_{j=0}^{k} x_{k-j} y_j - \sum\limits_{j=k+1}^{n-1} x_{n+k-j} y_j = \sum\limits_{j=0}^{k} x_j y_{k-j} - \sum\limits_{j=k+1}^{n-1} x_j y_{n+k-j} = \sum\limits_{j=0}^{k} y_{k-j} x_j - \sum\limits_{j=k+1}^{n-1} y_{n+k-j} x_j = (\vec y \cdot \vec x)_k$
$((\vec x \cdot \vec y) \cdot \vec z)_k=\sum\limits_{j=0}^{k} (\vec x \cdot \vec y)_{k-j}z_j - \sum\limits_{j=k+1}^{n-1} (\vec x \cdot \vec y)_{n+k-j}z_j=$
$=\sum\limits_{j=0}^{k} {\left( \sum\limits_ {i=0}^{k-j}{x_{k-j-i}y_i}- \sum\limits_{i=k-j+1}^{n-1}{x_{n+k-j-i}y_i} \right) z_j} - \sum\limits_ {j= k+1}^{n-1} {\left( \sum\limits_ {i=0}^{n+k-j} {x_{n+k-j-i}y_i} - \sum\limits_ {i=n+k-j+1}^{n-1} {x_{2n+k-j-i}y_i}\right) z_j}=$
$=\sum\limits_{j=0}^{k} {\sum\limits_ {i=0}^{k-j}{x_{k-j-i}y_i z_j}}- \sum\limits_{j=0}^{k} {\sum\limits_{i=k-j+1}^{n-1}{x_{n+k-j-i}y_i z_j}} - \sum\limits_ {j= k+1}^{n-1} {\sum\limits_ {i=0}^{n+k-j} {x_{n+k-j-i}y_i z_j}} + \sum\limits_ {j= k+1}^{n-1} {\sum\limits_ {i=n+k-j+1}^{n-1} {x_{2n+k-j-i}y_i z_j}}=$
$={\sum\limits_{i,j}^{} x_i y_ j z_{k-i-j} - \sum\limits_{i,j}^{} x_i y_ j z_{n+k-i-j} + \sum\limits_{i,j}^{} x_i y_ j z_{2 n+k-i-j} }=$
$=\sum\limits_{j=0}^{k} {\sum\limits_ {i=0}^{k-j}{z_{k-j-i}y_i x_j}}- \sum\limits_{j=0}^{k} {\sum\limits_{i=k-j+1}^{n-1}{z_{n+k-j-i}y_i x_j}}- \sum\limits_ {j= k+1}^{n-1} {\sum\limits_ {i=0}^{n+k-j} {z_{n+k-j-i}y_i x_j}}+ \sum\limits_ {j= k+1}^{n-1} {\sum\limits_ {i=n+k-j+1}^{n-1} {z_{2n+k-j-i}y_i x_j}}=$
$=\sum\limits_{j=0}^{k} {\left( \sum\limits_ {i=0}^{k-j}{z_{k-j-i}y_i}- \sum\limits_{i=k-j+1}^{n-1}{z_{n+k-j-i}y_i} \right) x_j} - \sum\limits_ {j= k+1}^{n-1} {\left( \sum\limits_ {i=0}^{n+k-j} {z_{n+k-j-i}y_i} - \sum\limits_ {i=n+k-j+1}^{n-1} {z_{2n+k-j-i}y_i}\right) x_j}=$
$=\sum\limits_{j=0}^{k} (\vec z \cdot \vec y)_{k-j}x_j - \sum\limits_{j=k+1}^{n-1} (\vec z \cdot \vec y)_{n+k-j}x_j=((\vec z \cdot \vec y) \cdot \vec x)_k \overset{(1.)}{=} (\vec x \cdot (\vec y \cdot \vec z))_k$
$(\vec x \cdot (\vec y + \vec z))_k=\sum\limits_{j=0}^{k} x_{k-j}(y_j+z_j) - \sum\limits_{j=k+1}^{n-1} x_{n+k-j}(y_j+z_j)=\sum\limits_{j=0}^{k} x_{k-j}y_j+x_{k-j}z_j - \sum\limits_{j=k+1}^{n-1} x_{n+k-j}y_j+x_{n+k-j}z_j=$
$=\sum\limits_{j=0}^{k} x_{k-j}y_j + \sum\limits_{j=0}^{k} x_{k-j}z_j- \sum\limits_{j=k+1}^{n-1} x_{n+k-j}y_j - \sum\limits_{j=k+1}^{n-1} x_{n+k-j}z_j=$
$=\sum\limits_{j=0}^{k} x_{k-j}y_j - \sum\limits_{j=k+1}^{n-1} x_{n+k-j}y_j + \sum\limits_{j=0}^{k} x_{k-j}z_j - \sum\limits_{j=k+1}^{n-1} x_{n+k-j}z_j=(\vec x \cdot \vec y + \vec x \cdot \vec z)_k$
Because the multiplication matrix of $\hat e_0$ is the identity matrix $M_{\hat e_0} = I_n$,
$\hat e_0$ must be obviously the neutral element of multiplication.
The multiplication matrix of i: $M_i=\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ \end{pmatrix}$ shows clearly, that i as factor shift down all coodinates of another factor and the last coordinate, which would 'fall out' coming back with altered sign in the first coordinate.
This means with exception of the last unit vector just the next one: $\forall j \lt (n-1): \space\space i \cdot \hat e_j = \hat e_{j+1}$, and for the last unit vector: $i \cdot \hat e_{n-1} = \hat e_0 = -1$.
The 0-th power of every vector must be the neutral element of multiplication, also for i: $i^0=\hat e_0$.
All together: $\hat e_j = i^j = -i^{j+n}$. The power row of the imaginary unit runs cyclically through all units and their additive inverses.
The argument of the trigonometric functions $\left(x+ {{kj} \over n} 2 π\right)$ segregates the circle from the starting radian x in more than one equal pieces. The vecors to these points can be rearranged to a regular polygon. This means the sum of these vectors must be zero in both coordinates. The sinus and cosinus from the formula are the perpendicular projections of these points onto the axis, so their sums also must be zero.
$\sum\limits_ {j=0}^{n-1} {\sin \left(x+ {{kj} \over n} 2 π \right)} = \sum\limits_{j=0}^{n-1}\sin(x+lj2π) =n \sin(x)$
$\sum\limits_ {j=0}^{n-1} {\cos \left(x+ {{kj} \over n} 2 π \right)} = \sum\limits_{j=0}^{n-1}\cos(x+lj2π) =n \cos(x)$
$\left| {\hat r_k}\right|=$$\sqrt {\sum\limits_{j=0}^{n-1}{\left( {d_k \over n} \cos \left({{(2k+1)j}\over n} π \right) \right)^2}}=$
$\sqrt{{d_k^2 \over {2 n^2}} \sum\limits_ {j=0}^{n-1}{\cos(0)+\cos \left({{(2 k+1)j}\over n} π \right)}}=$
$=\begin{cases} \overset {(6.a)}{=} \sqrt{{d_k^2 \over {2 n^2}} \sum\limits_ {j=0}^{n-1}{\cos(0)}} = \sqrt {d_k \over n} & \forall n \gt 2 k+1 \Leftrightarrow d_k=2 \\ \color{blue}{\overset {(6.c)}{=} \sqrt{{d_k^2 \over {2 n^2}} \sum\limits_ {j=0}^{n-1}{\cos(0)+\cos (0)}} = \sqrt{d_k^2 \over n} = \sqrt {d_k \over n}} & \color{blue}{\forall n = 2 k+1 \Leftrightarrow d_k=1} \end{cases}$
$\left|\hat i_k\right|=$$\sqrt {\sum\limits_{j=0}^{n-1}{\left({2 \over n} \sin \left({{(2 k+1)j}\over n} π \right) \right)^2}}=$ $\sqrt{{2 \over {n^2}} \sum\limits_ {j=0}^{n-1}{\cos(0)-\cos \left({{(2 k+1)j}\over n} π \right)}} \overset{(6.a)}{=} \sqrt{{2 \over {n^2}} \sum\limits_ {j=0}^{n-1}{\cos(0)}}=$ $\sqrt{2 \over {n} }$
$\hat r_k \circ \hat r_l=$${{d_k d_l} \over { n^2}} \sum\limits_{j=0}^{n-1} {\cos \left( {{(2k+1)j} \over { n}} π \right) \cdot \cos \left( {(2l+1)j} \over { n} π \right)}=$ ${{d_k d_l} \over { 2 n^2}} \sum\limits_{j=0}^{n-1} { \left(\cos \left({{2 (k-l) j}\over { n}} π \right)+\cos \left( {{2 (k+l+1) j} \over { n}} π \right) \right)} \overset {(6.a)}{=} 0+0$.
$\hat i_k \circ \hat r_l=$${{2 d_l} \over { n^2}}\sum\limits_{j=0}^{n-1} {\sin \left( {{(2 k+1)j} \over { n}} π \right) \cdot \cos \left( {{(2 l+1)j} \over { n}} π \right)}=$ ${{d_l} \over { n^2}} \sum\limits_{j=0}^{n-1} { \left(\sin \left({{2 (l-k) j}\over { n}} π \right)+\sin \left( {{2 (l+k+1) j} \over { n}} π \right) \right)} \overset {(6.a)}{=} 0+0$.
$\hat i_k \circ \hat i_l=$${{ 4} \over { n^2}} \sum\limits_{j=0}^{n-1} {\sin \left({{(2 k+1)j} \over { n}} π \right) \cdot \sin \left({{(2 l+1)j} \over { n}} π \right)}=$ ${{ 2} \over { n^2}} \sum\limits_{j=0}^{n-1} { \left(\cos \left({{2 (k-l) j}\over { n}} π \right)-\cos \left( {{2 (k+l+1) j} \over { n}} π \right) \right)} \overset {(6.a)}{=} 0-0$.
${\hat r_k}^2 \overset{!}{=} \hat r_k$ (proof in every single coordinate):
$({\hat r}_{k} ^2)_l$$=\sum\limits_{j=0}^{l}{r_{k_{l-j}} r_{k_{j}}} - \sum\limits_{j=l+1}^{n-1}{r_{k_{n+l-j}} r_{k_{j}}}=$
$=\sum\limits_{j=0}^{l}{{{ d_k \over n}} \cos \left({{(2 k+1)(l-j)} \over { n}} π \right) {{ d_k \over n}} \cos \left({{(2 k+1)j} \over { n}} π \right)} - \sum\limits_{j=l+1}^{n-1}{{{ d_k \over n}} \cos \left({{(2 k+1)(n+l-j)} \over { n}} π \right) {{ d_k \over n}} \cos \left({{(2 k+1)j} \over { n}} π \right)}=$
$={{ d_k^2 \over {n^2}}} \sum\limits_{j=0}^{l}{\cos \left({{(2 k+1)(l-j)} \over { n}} π \right) \cos \left({{(2 k+1)j} \over { n}} π \right)} + {{ d_k^2 \over {n^2}}} \sum\limits_{j=l+1}^{n-1}{\cos \left({{(2 k+1)(l-j)} \over { n}} π \right) \cos \left({{(2 k+1)j} \over { n}} π \right)}=$
$={{ d_k^2 \over {n^2}}} \sum\limits_{j=0}^{n-1}{\cos \left({{(2 k+1)(l-j)} \over { n}} π \right) \cos \left({{(2 k+1)j} \over { n}} π \right)}$
$={{ d_k^2 \over {2 n^2}}} \sum\limits_{j=0}^{n-1}{\cos \left({{(2 k+1)(l-2 j)} \over { n}} π \right) + \cos \left({{(2 k+1)l} \over { n}} π \right)}=$
$\overset {(6.)}{=}{d^2\over{2 n^2}}\sum\limits_{j=0}^{n-1}{\cos\left({{(2k+1)l}\over{n}}π\right)}$$={d^2 \over {2n}} \cos \left( {{(2k+1)l}\over{n}}π \right)={d \over n}\cos \left({{(2k+1)l}\over{n}}π \right)$ $=(\hat r_k)_l$.
$={d^2 \over {2n^2}} \sum\limits_{j=0}^{n-1}{\cos \left({{(2k+1)l-2(2k+1)j} \over {n}} π \right) + \cos \left({{(2 k+1)l} \over {n}} π \right)}$$\overset {(6.)}{=} {d^2 \over {2 n^2}} \sum\limits_{j=0}^{n-1}{2 \cos \left({{(2 k+1)l} \over { n}} π \right)={d \over n} \cos \left({{(2 k+1)l} \over {n}} π \right) = ({\hat r}_k)_l}$
${\hat i_k}^2 \overset{!}{=} - \hat r_k$ (proof in every single coordinate):
$({\hat i_k}^2)_l$$=\sum\limits_{j=0}^{l}{i_{k_{l-j}} i_{k_{j}}} - \sum\limits_{j=l+1}^{n-1}{i_{k_{n+l-j}} i_{k_{j}}}$
$=\sum\limits_{j=0}^{l}{{{ 2 \over n}} \sin \left({{(2 k+1)(l-j)} \over { n}} π \right) {{ 2 \over n}} \sin \left({{(2 k+1)j} \over { n}} π \right)} - \sum\limits_{j=l+1}^{n-1}{{{ 2 \over n}} \sin \left({{(2 k+1)(n+l-j)} \over { n}} π \right) {{ 2 \over n}} \sin \left({{(2 k+1)j} \over { n}} π \right)}=$
$={4 \over n^2} \sum\limits_{j=0}^{l}{\sin \left({{(2 k+1)(l-j)} \over { n}} π \right) \sin \left({{(2 k+1)j} \over { n}} π \right)} + {{ 4 \over n^2}} \sum\limits_{j=l+1}^{n-1}{\sin \left({{(2 k+1)(l-j)} \over { n}} π \right) \sin \left({{(2 k+1)j} \over { n}} π \right)}=$
$={4 \over n^2} \sum\limits_{j=0}^{n-1}{\sin \left({{(2 k+1)(l-j)} \over { n}} π \right) \sin \left({{(2 k+1)j} \over { n}} π \right)}$
$={2 \over n^2} \sum\limits_{j=0}^{n-1}{\cos \left({{(2 k+1)(l-2 j)} \over { n}} π \right) - \cos \left({{(2 k+1)l} \over {n}} π \right)} \overset {(6.a)}{=}$
$\overset {(6.a)}{=}{2 \over {n^2}} \sum\limits_{j=0}^{n-1}{-\cos \left({{(2 k+1)l} \over {n}} π \right)}$
$=- {2 \over n}\cos \left({{(2 k+1)l} \over { n}} π \right)$
$=(-{\hat r}_k)_l$
$\hat i_k \cdot \hat r_k \overset{!}{=} \hat i_k$:
$(\hat i_k \cdot {\hat r}_k)_l$$=\sum\limits_{j=0}^{l}{i_{k_{l-j}} r_{k_{j}}} - \sum\limits_{j=l+1}^{n-1}{i_{k_{n+l-j}} r_{k_{j}}}=$
$=\sum\limits_{j=0}^{l}{{2 \over n} \sin \left({{(2k+1)(l-j)} \over {n}} π \right) {2 \over n} \cos \left({{(2k+1)j} \over {n}} π \right)} - \sum\limits_{j=l+1}^{n-1}{{{ 2 \over n}} \sin \left({{(2 k+1)(n+l-j)} \over {n}} π \right) {2 \over n} \cos \left({{(2 k+1)j} \over {n}} π \right)}=$
$={4 \over n^2} \sum\limits_{j=0}^{l}{\sin \left({{(2k+1)(l-j)} \over {n}} π \right) \cos \left({{(2k+1)j} \over {n}} π \right)} + {4 \over n^2} \sum\limits_{j=l+1}^{n-1}{\sin \left({{(2 k+1)(l-j)} \over {n}} π \right) \cos \left({{(2 k+1)j} \over {n}} π \right)}=$
$={4 \over n^2} \sum\limits_{j=0}^{n-1}{\sin \left({{(2k+1)(l-j)} \over {n}} π \right) \cos \left({{(2k+1)j} \over {n}} π \right)}$
$={2 \over n^2} \sum\limits_{j=0}^{l}{\sin \left({{(2k+1)(l-2j)} \over {n}} π \right) + \sin \left({{(2k+1)l} \over {n}} π \right)} \overset {(6.a)}{=}$
${2 \over n^2} \sum\limits_{j=0}^{l}{\sin \left({{(2k+1)l} \over {n}} π \right)}=$
$={2 \over n} \sin \left({{(2k+1)l}\over{n}} π \right)$
$=(\hat i_k)_l$
$({\hat r}_k \cdot {\hat r}_l)_m$$=\sum\limits_{j=0}^m{r_{k_{m-j}} r_{l_j}} -\sum\limits_{j=m+1}^{n-1}{r_{k_{n+m-j}} r_{l_j}}=$
$=\sum\limits_{j=0}^m{{d_k \over {n}}\cos \left({{(2 k+1)(m-j)} \over {n}} π \right) {d_l \over { n }}\cos \left({{(2 l+1)j} \over { n}} π \right) } -\sum\limits_{j=m+1}^{n-1}{{d_k \over {n}}\cos \left({{(2 k+1)(n+m-j)} \over {n}} π \right) {d_l \over {n}}\cos \left({{(2 l+1)j} \over {n}} π \right) }=$
$={{d_k d_l} \over {n^2}}\sum\limits_{j=0}^{m}{\cos \left({{(2 k+1)(m-j)} \over {n}} π \right) \cos \left({{(2 l+1)j} \over { n}} π \right) } + {{d_k d_l}\over {n^2}}\sum\limits_{j=m+1}^{n-1}{\cos \left({{(2 k+1)(m-j)} \over {n}} π \right) \cos \left({{(2 l+1)j} \over {n}} π \right) }=$
$={{d_k d_l} \over {n^2}} \sum\limits_{j=0}^{n-1}{\cos \left({{(2 k+1)(m-j)} \over {n}} π \right) \cos \left({{(2 l+1)j} \over { n}} π \right)}$
$={{d_k d_l} \over {2 n^2}} \sum\limits_{j=0}^{n-1}{\cos \left({{(2 k+1)m-2(k+l+1)j} \over {n}} π \right) + \cos \left({{(2 k+1)m+2(l-k)j} \over {n}} π \right)} \overset{(6.a)}{=} 0+0$
$(\hat i_k \cdot \hat r_l)_m$$=\sum\limits_{j=0}^m{i_{k_{m-j}} r_{l_j}} -\sum\limits_{j=m+1}^{n-1}{i_{k_{n+m-j}} r_{l_j}}=$
$=\sum\limits_{j=0}^m{{d_k \over {n}}\sin \left({{(2 k+1)(m-j)} \over {n}} π \right) {d_l \over {n}}\cos \left({{(2l+1)j} \over {n}} π \right) } -\sum\limits_{j=m+1}^{n-1}{{d_k \over {n}}\sin \left({{(2 k+1)(n+m-j)} \over {n}} π \right) {d_l \over {n}}\cos \left({{(2 l+1)j} \over {n}} π \right) }=$
$={{d_k d_l}\over { n^2 }} \sum\limits_{j=0}^{m}{\sin \left({{(2 k+1)(m-j)} \over { n}} π \right) \cos \left({{(2l+1)j} \over {n}} π \right) } + {{d_k d_l}\over {n^2}}\sum\limits_{j=m+1}^{n-1}{\sin \left({{(2 k+1)(m-j)} \over {n}} π \right) \cos \left({{(2 l+1)j} \over {n}} π \right) }=$
$={{d_k d_l} \over { n^2 }} \sum\limits_{j=0}^{n-1}{\sin \left({{(2 k+1)(m-j)} \over { n}} π \right) \cos \left({{(2l+1)j} \over {n}} π \right)}$
$={{d_k d_l} \over { 2 n^2 }} \sum\limits_{j=0}^{n-1}{\sin \left({{(2 k+1)m-2(k+l+1)j} \over { n}} π \right) + \sin \left({{(2k+1)m+2(l-k)j} \over {n}} π \right)} \overset {(6.a)}{=} 0+0$
$(\hat i_k \cdot \hat i_l)_m$$=\sum\limits_{j=0}^{m}{i_{k_{m-j}} i_{l_j}} -\sum\limits_{j=m+1}^{n-1}{i_{k_{n+m-j}} i_{l_j}}=$
$=\sum\limits_{j=0}^{m}{{d_k \over {n}}\sin \left({{(2 k+1)(m-j)} \over {n}} π \right) {d_l \over { n }}\sin \left({{(2 l+1)j} \over { n}} π \right) } -\sum\limits_{j=m+1}^{n-1}{{d_k \over { n }}\sin \left({{(2 k+1)(n+m-j)} \over {n}} π \right) {d_l \over { n }}\sin \left({{(2 l+1)j} \over { n}} π \right) }=$
$={{d_k d_l}\over { n^2 }}\sum\limits_{j=0}^{m}{\sin \left({{(2 k+1)(m-j)} \over { n}} π \right) \sin \left({{(2 l+1)j} \over { n}} π \right) } +{{d_k d_l}\over { n^2 }}\sum\limits_{j=m+1}^{n-1}{\sin \left({{(2 k+1)(m-j)} \over { n}} π \right) \sin \left({{(2 l+1)j} \over { n}} π \right) }=$
$={{d_k d_l} \over { n^2 }} \sum\limits_{j=0}^{n-1}{\sin \left({{(2 k+1)(m-j)} \over { n}} π \right) \sin \left({{(2 l+1)j} \over { n}} π \right)}$
$={{d_k d_l} \over { 2 n^2 }} \sum\limits_{j=0}^{n-1}{\cos \left({{(2 k+1)m-2(k+l+1)j} \over { n}} π \right) -\cos \left({{(2 k+1)m+2(l-k)j} \over {n}} π \right)} \overset{(6.a)}{=} 0-0$
$A_n^{-1} \overset {!}{=} \left( {n \over 2} \hat r_0, {n \over 2} \hat i_0, {n \over 2} \hat r_1, {n \over 2} \hat i_1, \ldots {\color{blue}{,n \hat r_k}} \right)^T$:
With $\hat a_k$ as the k-th atomic unit in $A_n$, to show $A_n^{-1} \cdot A_n \overset {!}{=} I_n$ (in every coordinate):
$(A_n^{-1} \cdot A_n)_{i,j} = {n \over d} \hat a_i \circ \hat a_j = \begin{cases} \forall i=j: & {n \over d} \hat a_i \circ \hat a_i = {n \over d} \cdot \left|\hat a_i\right|^2 \overset {(7.)}{=} {n \over d} \cdot {d \over n} = 1 \\ \forall i \ne j: & {n \over d} \hat a_i \circ \hat a_j \overset {(12.)}{=} 0 \end{cases}$
$\gamma_{i,j}=(\beta \cdot \alpha)_{i,j}=\sum\limits_{m=0}^{d-1}{\beta_{i,m}\alpha_{m,j}}$
$=\sum\limits_{m=0}^{k-1}{\beta_{i,2 m}\alpha_{2 m, j}+\beta_{i,2 m+1}\alpha_{2 m+1,j}}=$
$=\sum\limits_{m=0}^{k-1}{{2 \over n} \cos \left({{(2l_m +1)i} \over n} \pi \right) \cos \left({{(2 m +1)j}\over d} \pi \right) + {2 \over n} \sin \left({{(2 l_m +1)i}\over n} \pi \right) \sin \left({{(2 m +1)j}\over d} \pi \right)}=$
$={1 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{d(2l_m +1)i-n(2 m+1)j}\over {nd}} \pi \right)+ \cos \left({{d(2l_m +1)i+n(2m+1)j}\over {nd}} \pi \right)+$
$+{1 \over n} \sum\limits_{m=0}^{k-1}\cos \left({{d(2l_m +1)i-n(2m+1)j}\over {nd}} \pi \right)-\cos \left({{d(2l_m +1)i+n(2m+1)j}\over {nd}} \pi \right)=$
$={2 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{d(2l_m +1)i-n(2m+1)j}\over {nd}} \pi \right)$
$\gamma_{i,j}=(\beta \cdot \alpha)_{i,j}=\sum\limits_{m=0}^{d-1}{\beta_{i,m}\alpha_{m,j}}$
$=\left(\sum\limits_{m=0}^{k-1}{\beta_{i,2m}\alpha_{2m, j}+\beta_{i,2m+1}\alpha_{2m+1,j}} \right){\color{blue}{+\beta_{i,2 k+1}\alpha_{2 k+1,j}}}=$
$=\sum\limits_{m=0}^{k-1}\left({2 \over n} \cos \left({{(2l_m +1)i}\over n} \pi \right) \cos \left({{(2m+1)j}\over d} \pi \right)+{2 \over n} \sin \left({{(2l_m+1)i}\over n} \pi \right) \sin \left({{(2m+1)j}\over d} \pi \right) \right){\color{blue}{+{(-1)^{i+j} \over n}}}$
$={2 \over n}\sum\limits_{m=0}^{k-1}\cos \left({{d(2l_m+1)i-n(2m+1)j}\over {nd}} \pi \right){\color{blue}{+{(-1)^{i+j} \over n}}}$
$\left| \hat \gamma_p \right| \overset{!}{=} \sqrt {d \over n}$:
$\left| \hat \gamma_p \right| = \sqrt{\hat \gamma_p \circ \hat \gamma_p}=\sqrt{\sum\limits_{m=0}^{k-1}\alpha_{m,p}^2 \hat \beta_m \circ \hat \beta_m}=$
$\overset {(7.)}{=} \sqrt{{2 \over n} \sum\limits_{m=0}^{d-1}{\alpha_{m,p}^2}}$ $=\sqrt {{2 \over n} \sum\limits_{m=0}^{k-1}{\alpha_{2 m,p}^2 + \alpha_{2 m+1,p}^2}}$ $=\sqrt {{2 \over n} \sum\limits_{m=0}^{k-1}{\cos^2 \left({{(2 m+1)p} \over d} \pi \right)+ \sin^2 \left({{(2m+1)p} \over d} \pi \right)}}$ $=\sqrt{{2k}\over n}$ $=\sqrt{d \over n}$
$\overset {(7.)}{=} \sqrt{\left( {2 \over n}\sum\limits_{m=0}^{k-1} \alpha_{2m,p}^2 + \alpha_{2m+1,p}^2 \right){\color{blue}{+{1 \over n} \alpha_{k,p}^2}}}$
$=\sqrt{\left({2 \over n}\sum\limits_{m=0}^{k-1}\cos^2 \left({{(2m+1)p} \over d} \pi \right)+\sin^2 \left({{(2m+1)p} \over d} \pi \right)\right){\color{blue}{+{1 \over n}\cos^2(p \pi)}}}=$
$=\sqrt{2k{\color{blue}{+1}}\over n}$
$=\sqrt{d \over n}$
$\hat \gamma_p \circ \hat \gamma_q \overset{!}{=} 0 {\color{black}{aaaa}}\forall p \ne q$:
$\hat \gamma_p \circ \hat \gamma_q$
$=\sum\limits_{m=0}^{d-1}\alpha_{m,p} \hat \beta_m \circ \sum\limits_{m=0}^{d-1}\alpha_{m,q} \hat \beta_m \overset{(8.)}{=} \sum\limits_{m=0}^{d-1}\alpha_{m,p} \alpha_{m,q} \hat \beta_m \circ \hat \beta_m \overset{(7.)}{=}$
${2 \over n} \sum\limits_{m=0}^{d-1}\alpha_{m,p} \alpha_{m,q}=$
$={2 \over n} \sum\limits_{m=0}^{k-1}\alpha_{2m,p} \alpha_{2m,q} + \alpha_{2m+1,p} \alpha_{2m+1,q}=$
$={2 \over n} \left( \sum\limits_{m=0}^{d-1}\cos \left({{(2m+1)p} \over d} \pi \right)\cos \left({{(2m+1)q} \over d} \pi \right)+\sin \left({{(2m+1)p} \over d} \pi \right)\sin \left({{(2m+1)q} \over d} \pi \right) \right)=$
$={2 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{(2m+1)(p-q)} \over d} \pi \right)$
$={1 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{(2m+1)(p-q)} \over d} \pi \right)+{1 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{(-2 m-1)(p-q)} \over d} \pi \right)=$
$={1 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{(2m+1)(p-q)} \over d} \pi \right)+{1 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{(4 k-2 m-1)(p-q)} \over d} \pi \right)=$
$={1 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{(2m+1)(p-q)} \over d} \pi \right)+{1 \over n} \sum\limits_{m=k}^{2 k-1} \cos \left({{(2 m+1)(p-q)} \over d} \pi \right)$
$={1 \over n} \sum\limits_{m=0}^{d-1} \cos \left({{(2m+1)(p-q)} \over d} \pi \right) \overset{(6.)}{=}0$
$\hat \gamma_p \circ \hat \gamma_q$
$=\sum\limits_{m=0}^{d-1} \alpha_{m,p} \hat \beta_m \circ \sum\limits_{m=0}^{d-1} \alpha_{m,q} \hat \beta_m$
$\overset{(8.)}{=} \sum\limits_{m=0}^{d-1} \alpha_{m,p} \alpha_{m,q} \hat \beta_m \circ \hat \beta_m$
$\overset{(7.)}{=} \sum\limits_{m=0}^{d-1}{d_m \over n} \alpha_{m,p} \alpha_{m,q}$
$={2 \over n} \left( \sum\limits_{m=0}^{k-1} \alpha_{2m,p} \alpha_{2m,q}+\alpha_{2m+1,p} \alpha_{2m+1,q} \right)+{\color{blue}{1 \over n} \alpha_{2k,p} \alpha_{2k,q}}=$
$={2 \over n} \left( \sum\limits_{m=0}^{d-1} \cos \left({{(2m+1)p} \over d} \pi \right)\cos \left({{(2m+1)q} \over d} \pi \right)+\sin \left({{(2m+1)p} \over d} \pi \right)\sin \left({{(2m+1)q} \over d} \pi \right) \right){\color{blue}+{1 \over n}\cos \left({{(2k+1)p} \over d} \pi \right)\cos \left({{(2k+1)q} \over d} \pi \right)}=$
$={2 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{(2m+1)(p-q)} \over d} \pi \right){\color{blue}+{1 \over n}\cos(p \pi)\cos(q \pi)}=$
$={1 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{(2m+1)(p-q)} \over d} \pi \right)+ {1 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{(-2m-1)(p-q)} \over d} \pi \right){\color{blue}+{1 \over n}\cos((p-q) \pi)}=$
$={1 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{(2m+1)(p-q)} \over d} \pi \right)+ {1 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{(4k+2-2m-1)(p-q)} \over d} \pi \right){\color{blue}+{1 \over n}\cos ((p-q) \pi)}=$
$={1 \over n} \sum\limits_{m=0}^{k-1} \cos \left({{(2m+1)(p-q)} \over d} \pi \right)+ {1 \over n} \sum\limits_{m=k+1}^{2 k} \cos \left({{(2m+1)(p-q)} \over d} \pi \right){\color{blue}+{1 \over n}\cos \left({{(2k+1)(p-q)} \over d} \pi \right)}=$
$={1 \over n} \sum\limits_{m=0}^{d-1} \cos \left({{(2 m+1)(p-q)} \over d} \pi \right)$
$ \overset{(6.)}{=}0$
Copyright © 2008-2020 by jampa